AZEE Tablets/DT/Dry Syrup (Azithromycin)

Composition

AZEE-250 Tablets
Each film-coated tablet contains:
Azithromycin (anhydrous)............. 250 mg

(as Azithromycin Dihydrate, IP)

AZEE-500 Tablets
Each film-coated tablet contains:
Azithromycin (anhydrous)............. 500 mg

(as Azithromycin Dihydrate, IP)

AZEE-1000 Tablets
Each film-coated tablet contains:
Azithromycin (anhydrous)............. 1,000 mg

(as Azithromycin Dihydrate, IP)

AZEE-100 DT
Each uncoated dispersible tablet contains:
Azithromycin (anhydrous).........100 mg

(as Azithromycin Dihydrate, IP)

AZEE-200 DT
Each uncoated dispersible tablet contains:
Azithromycin (anhydrous)........200 mg

(as Azithromycin Dihydrate, IP)

AZEE-100 Dry Syrup
Each 5 ml (after reconstitution) contains:
Azithromycin Dihydrate, IP, equivalent to
Azithromycin (anhydrous) 100 mg
(Bottle of 15ml)

AZEE-200 Dry Syrup
Each 5 ml (after reconstitution) contains:
Azithromycin a Dihydrate, IP, equivalent to
Azithromycin (anhydrous) 200 mg

(Bottle of 15 ml)

AZEE-100 XL Dry Syrup
Each 5 ml (after reconstitution) contains:
Azithromycin Dihydrate, IP, equivalent to
Azithromycin (anhydrous) 100 mg

(Bottle of 30 ml)

AZEE-200 XL Dry Syrup
Each 5 ml (after reconstitution) contains:
Azithromycin a Dihydrate, IP, equivalent to
Azithromycin (anhydrous) 200 mg

(Bottle of 30 ml)

Dosage Forms

Oral tablets, dispersible tablets and dry powder for oral suspension.

Pharmacology

Pharmacodynamics

Azithromycin is a macrolide antibiotic belonging to the azalide group. The mechanism of action of azithromycin is based on the suppression of bacterial protein synthesis, meaning it binds to the ribosomal 50s sub-unit and inhibits the translocation of peptides. Azithromycin acts as a bacteriostatic. Nucleic acid synthesis is not affected.

Azithromycin concentrates in phagocytes and fibroblasts as demonstrated by *in vitro* incubation techniques. Using such methodology, the ratio of intracellular to extracellular concentration was >30 after 1 hour of incubation. *In vivo* studies suggest that concentration in phagocytes may contribute to drug distribution to inflamed tissues.

Azithromycin has been shown to be active against most isolates of the following bacteria, both *in vitro* and in clinical infections:

Aerobic Gram-positive Bacteria

Methicillin-susceptible Staphylococcus aureus

Streptococcus agalactiae

Penicillin-susceptible Streptococcus pneumoniae

Streptococcus pyogenes (Group A)

Aerobic Gram-negative Bacteria

Haemophilus influenzae
Moraxella catarrhalis
Neisseria gonorrhoeae
Haemophilus parainfluenzae
Pasteurella multocida

Other Bacteria
Chlamyphila pneumoniae
Chlamydia trachomatis
Mycoplasma pneumoniae
Legionella pneumophila
Mycobacterium avium
Mycobacterium intracellulare

The following in vitro data are available, but their clinical significance is unknown.

Azithromycin exhibits in vitro minimal inhibitory concentrations (MICs) of 4.0 mcg/ml or less against most (≥90%) isolates of the following bacteria; however, the safety and effectiveness of azithromycin in treating clinical infections due to these bacteria have not been established in adequate and well-controlled trials.

Aerobic Gram-positive Bacteria
Beta-haemolytic streptococci (Groups C, F, G)
Viridans group streptococci

Aerobic Gram-negative Bacteria
Bordetella pertussis
Haemophilus ducreyi
Campylobacter jejuni

Anaerobic Bacteria
Bacteroides bivius
Clostridium perfringens
Peptostreptococcus spp.
Prevotella bivia

Other Bacteria
Species for Which Acquired Resistance May Be a Problem

Aerobic Gram-positive microorganisms

Streptococcus pneumoniae
Penicillin-intermediate
Penicillin-resistant

Inherently Resistant Organisms

Aerobic Gram-positive microorganisms

Enterococcus faecalis
Staphylococci MRSA, MRSE*

Aerobic Gram-negative microorganisms

Escherichia coli
Pseudomonas aeruginosa
Klebsiella spp.

Anaerobic microorganisms

Bacteroides fragilis group

*Methycillin-resistant staphylococci have a very high prevalence of acquired resistance to macrolides and have been placed here because they are rarely susceptible to azithromycin.

Based on animal models of infection, the antibacterial activity of azithromycin appears to correlate with the ratio of area under the concentration-time curve to minimum inhibitory concentration (AUC/MIC) for certain pathogens (S. pneumoniae and S. aureus). The principal pharmacokinetic/pharmacodynamic parameter best associated with clinical and microbiological cure has not been elucidated in clinical trials with azithromycin.

Mechanism of Resistance

Resistance to azithromycin may be natural or acquired. There are three main mechanisms of resistance affecting azithromycin:

- Efflux: resistance may be due to an increase in the number of efflux pumps on the cell membrane. In particular, 14- and 15-link macrolides are affected (M-phenotype).
- Alterations of the cell structure: methylization of the 23s rRNS may reduce the affinity of the ribosomal binding sites, which can result in microbial resistance to macrolides, lincosamides and
group B streptogramins (S₉) (MLS₉-phenotype).

- Enzymatic deactivation of macrolides is only of limited clinical significance.

Azithromycin demonstrates cross resistance with erythromycin-resistant Gram-positive isolates. In the presence of the M-phenotype, complete cross-resistance exists between azithromycin and clarithromycin, erythromycin and roxithromycin. With the MLS₉-phenotype, additional cross-resistance exists with clindamycin and streptogramin B. A partial cross-resistance exists with spiramycin.

Cardiac Electrophysiology

QTc interval prolongation was studied in a randomized, placebo-controlled, parallel trial in 116 healthy subjects who received either chloroquine (1,000 mg) alone or in combination with azithromycin (500 mg, 1,000 mg and 1,500 mg once daily). Co-administration of azithromycin increased the QTc interval in a dose- and concentration-dependent manner. In comparison with chloroquine alone, the maximum mean (95% upper confidence bound) increases in QTcF were 5 (10) ms, 7 (12) ms and 9 (14) ms with the co-administration of 500 mg, 1,000 mg and 1,500 mg azithromycin, respectively.

Pharmacokinetics

Following oral administration of a single 500 mg dose (two 250 mg tablets) to 36 fasted healthy male volunteers, the mean (SD) pharmacokinetic parameters were \(\text{AUC}_{0-72} = 4.3 \ (1.2) \ \mu\text{g} \cdot \text{h/mL} \); \(\text{C}_{\text{max}} = 0.5 \ (0.2) \ \mu\text{g/mL} \); \(\text{T}_{\text{max}} = 2.2 \ (0.9) \ \text{hours} \). Two azithromycin 250 mg tablets are bioequivalent to a single 500 mg tablet.

In a two-way crossover study, 12 adult healthy volunteers (6 males, 6 females) received 1,500 mg of azithromycin administered in single daily doses over either 5 days (two 250 mg tablets on day 1, followed by one 250 mg tablet on days 2–5) or 3 days (500 mg per day for days 1–3). Due to limited serum samples on day 2 (3-day regimen) and days 2–4 (5-day regimen), the serum concentration-time profile of each subject was fit to a 3-compartment model and the \(\text{AUC}_{(0-\text{infinity})} \) for the fitted concentration profile was comparable between the 5-day and 3-day regimens.

<table>
<thead>
<tr>
<th>Pharmacokinetic Parameter</th>
<th>3-Day Regimen</th>
<th>5-Day Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1</td>
<td>Day 3</td>
</tr>
<tr>
<td>(\text{C}_{\text{max}}) (serum, (\mu\text{g/mL}))</td>
<td>0.44 (0.22)</td>
<td>0.54 (0.25)</td>
</tr>
<tr>
<td>Serum (\text{AUC}_{(0-\text{infinity})}) ((\mu\text{g} \cdot \text{hr/mL}))</td>
<td>17.4 (6.2)*</td>
<td>14.9 (3.1)*</td>
</tr>
<tr>
<td>Serum (\text{T}_{1/2})</td>
<td>71.8 hours</td>
<td>68.9 hours</td>
</tr>
</tbody>
</table>

*Total AUC for the entire 3-day and 5-day regimens

Absorption

Bioavailability after oral administration is approximately 37%. Peak concentrations in the plasma are attained 2–3 hours after taking the medicinal product.

In a two-way crossover study in which 12 healthy subjects received a single 500 mg dose of azithromycin (two 250 mg tablets) with or without a high-fat meal, food was shown to increase the \(\text{C}_{\text{max}} \) by 23% but had no effect on the AUC.
When azithromycin suspension was administered with food to 28 adult healthy male subjects, the C_{max} increased by 56% and the AUC was unchanged.

Distribution

Orally administered azithromycin is widely distributed throughout the body. In pharmacokinetic studies it has been demonstrated that the concentrations of azithromycin measured in tissues are noticeably higher (as much as 50 times) than those measured in plasma, which indicates that the agent strongly binds to tissues. The antibacterial activity of azithromycin is pH related and appears to be reduced with decreasing pH. However, the extensive distribution of drug to tissues may be relevant to clinical activity.

Binding to serum proteins varies according to plasma concentration and ranges from 12% at 0.5 microgram/ml up to 52% at 0.05 microgram azithromycin/ml serum. The mean volume of distribution at steady state (VVss) has been calculated to be 31.1 l/kg.

Azithromycin has been shown to penetrate into human tissues, including skin, lung, tonsil, and cervix. Extensive tissue distribution was confirmed by examination of additional tissues and fluids (bone, ejaculum, prostate, ovary, uterus, salpinx, stomach, liver, and gallbladder). As there are no data from adequate and well-controlled studies of azithromycin treatment of infections in these additional body sites, the clinical significance of these tissue concentration data is unknown.

Following a regimen of 500 mg on the first day and 250 mg daily for 4 days, very low concentrations were noted in cerebrospinal fluid (less than 0.01 µg/mL) in the presence of non-inflamed meninges.

Concentrations in the infected tissues such as lungs, tonsil and prostate are higher than the MIC$_{90}$ of the most frequently occurring pathogens after a single dose of 500 mg.

In animal tests, high concentrations of azithromycin have been found in phagocytes. It has also been established that during active phagocytosis, higher concentrations of azithromycin are released than are released from inactive phagocytes. In animal models the azithromycin concentrations measured in inflammation foci were high.

The antimicrobial activity of azithromycin is pH-related and appears to be reduced with decreasing pH. However, the extensive distribution of drug to tissues may be relevant to clinical activity.

Metabolism

In vitro and *in vivo* studies to assess the metabolism of azithromycin have not been performed.

Ten metabolites were also detected, which were formed through N- and O-demethylation, hydroxylation of desosamine- and aglycone rings and degradation of cladinose conjugate. Comparison of the results of liquid chromatography and microbiological analyses has shown that the metabolites of azithromycin are not microbiologically active.

Elimination

Plasma concentrations of azithromycin following single 500 mg oral and intravenous doses declined in a polyphasic pattern, with a mean apparent plasma clearance of 630 mL/min and terminal elimination half-life of 68 hours. The prolonged terminal half-life is thought to be due to extensive uptake and subsequent release of drug from tissues.

Biliary excretion of azithromycin, predominantly as unchanged drug, is a major route of elimination.
Over the course of a week, approximately 6% of the administered dose appears as unchanged drug in urine.

Specific Populations

Renal Impairment

Azithromycin pharmacokinetics was investigated in 42 adults (21–85 years of age) with varying degrees of renal impairment. Following the oral administration of a single 1,000 mg dose of azithromycin, mean C_{max} and AUC_{0-120} increased by 5.1% and 4.2%, respectively in subjects with mild-to-moderate renal impairment (GFR: 10 to 80 mL/min) compared with subjects with normal renal function (GFR >80 mL/min). The mean C_{max} and AUC_{0-120} increased 61% and 35%, respectively, in subjects with severe renal impairment (GFR <10 mL/min) compared with subjects with normal renal function (GFR >80 mL/min).

Hepatic Impairment

In patients with mild-to-moderate hepatic impairment, there is no evidence of a marked change in serum pharmacokinetics of azithromycin compared to normal hepatic function. In these patients, urinary recovery of azithromycin appears to increase perhaps to compensate for reduced hepatic clearance.

Gender

There are no significant differences in the disposition of azithromycin between male and female subjects. No dosage adjustment is recommended based on gender.

Geriatric Patients

When studied in healthy elderly subjects aged 65–85 years, the pharmacokinetic parameters of azithromycin in elderly men were similar to those in young adults (18–40 years old); however, in elderly women, although higher peak concentrations (increased by 30–50%) were observed, no significant accumulation occurred. Dosage adjustment does not appear to be necessary for older patients with normal renal and hepatic function receiving treatment with this dosage regimen.

Paediatric Patients

In two clinical studies, azithromycin for oral suspension was dosed at 10 mg/kg on day 1, followed by 5 mg/kg on days 2 through 5 to two groups of paediatric patients (aged 1–5 years and 5–15 years, respectively). The mean pharmacokinetic parameters on day 5 were $C_{\text{max}}=0.216 \, \mu\text{g/mL}$, $T_{\text{max}}=1.9$ hours, and $\text{AUC}_{0-24}=1.822 \, \mu\text{g} \cdot \text{hr/mL}$ for the 1- to 5-year-old group and were $C_{\text{max}}=0.383 \, \mu\text{g/mL}$, $T_{\text{max}}=2.4$ hours, and $\text{AUC}_{0-24}=3.109 \, \mu\text{g} \cdot \text{hr/mL}$ for the 5- to 15-year-old group.

Two clinical studies were conducted in 68 paediatric patients aged 3–16 years to determine the pharmacokinetics and safety of azithromycin for oral suspension. Azithromycin was administered following a low-fat breakfast.

The first study consisted of 35 paediatric patients treated with 20 mg/kg/day (maximum daily dose 500 mg) for 3 days, of whom 34 patients were evaluated for pharmacokinetics. In the second study, 33 paediatric patients received doses of 12 mg/kg/day (maximum daily dose 500 mg) for 5 days, of whom 31 patients were evaluated for pharmacokinetics.
In both studies, azithromycin concentrations were determined over a 24-hour period following the last daily dose. Patients weighing above 25.0 kg in the 3-day study or 41.7 kg in the 5-day study received the maximum adult daily dose of 500 mg. Accordingly, 11 patients (weighing 25.0 kg or less) in the first study and 17 patients (weighing 41.7 kg or less) in the second study received a total dose of 60 mg/kg. The following table shows pharmacokinetic data in the subset of paediatric patients who received a total dose of 60 mg/kg.

<table>
<thead>
<tr>
<th>Pharmacokinetic Parameter</th>
<th>3-Day Regimen (20 mg/kg × 3 days)</th>
<th>5-Day Regimen (12 mg/kg × 5 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>C_{max} (µg/mL)</td>
<td>1.1 (0.4)</td>
<td>0.5 (0.4)</td>
</tr>
<tr>
<td>T_{max} (hr)</td>
<td>2.7 (1.9)</td>
<td>2.2 (0.8)</td>
</tr>
<tr>
<td>AUC_{0-24} (µg∙hr/mL)</td>
<td>7.9 (2.9)</td>
<td>3.9 (1.9)</td>
</tr>
</tbody>
</table>

The similarity of the overall exposure ($\text{AUC}_{0-\infty}$) between the 3-day and 5-day regimens in paediatric patients is unknown.

Single-dose pharmacokinetics in paediatric patients given doses of 30 mg/kg has not been studied.

Drug–Drug Interactions

Drug interaction studies were performed with azithromycin and other drugs likely to be co-administered. The effects of co-administration of azithromycin on the pharmacokinetics of other drugs are shown in Table 1 and the effects of other drugs on the pharmacokinetics of azithromycin are shown in Table 2.

Co-administration of azithromycin at therapeutic doses had a modest effect on the pharmacokinetics of the drugs listed in Table 1. No dosage adjustment of drugs listed in Table 1 is recommended when co-administered with azithromycin.

Co-administration of azithromycin with efavirenz or fluconazole had a modest effect on the pharmacokinetics of azithromycin. Nelfinavir significantly increased the C_{max} and AUC of azithromycin. No dosage adjustment of azithromycin is recommended when administered with drugs listed in Table 2.

| Table 1: Drug Interactions: Pharmacokinetic Parameters for Co-administered Drugs in the Presence of Azithromycin |
|---|---|
| Co-administered Drug | Dose of Co-administered Drug | Dose of Azithromycin | Ratio (With/Without Azithromycin) of Co-administered Drug Pharmacokinetic Parameters (90% CI); No Effect = 1.00 | Mean C_{max} | Mean AUC |

Mean C_{max} | Mean AUC
<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Co-Dose</th>
<th>N</th>
<th>Cmax (90% CI)</th>
<th>AUC (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin</td>
<td>10 mg/day × 8 days</td>
<td>500 mg/day PO on days 6–8</td>
<td>12</td>
<td>0.83 (0.63 to 1.08)</td>
<td>1.01 (0.81 to 1.25)</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>200 mg/day × 2 days, then 200 mg b.i.d. × 18 days</td>
<td>500 mg/day PO for days 16–18</td>
<td>7</td>
<td>0.97 (0.88 to 1.06)</td>
<td>0.96 (0.88 to 1.06)</td>
</tr>
<tr>
<td>Cetirizine</td>
<td>20 mg/day × 11 days</td>
<td>500 mg PO on day 7, then 250 mg/day on days 8–11</td>
<td>14</td>
<td>1.03 (0.93 to 1.14)</td>
<td>1.02 (0.92 to 1.13)</td>
</tr>
<tr>
<td>Didanosine</td>
<td>200 mg PO b.i.d. × 21 days</td>
<td>1,200 mg/day PO on days 8–21</td>
<td>6</td>
<td>1.44 (0.85 to 2.43)</td>
<td>1.14 (0.83 to 1.57)</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>400 mg/day × 7 days</td>
<td>600 mg PO on day 7</td>
<td>14</td>
<td>1.04 (0.98 to 1.11)</td>
<td>1.01 (0.97 to 1.05)</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>200 mg PO single dose</td>
<td>1,200 mg PO single dose</td>
<td>18</td>
<td>0.96 (0.86 to 1.08)</td>
<td>0.90 (0.81 to 1.00)</td>
</tr>
<tr>
<td>Indinavir</td>
<td>800 mg t.i.d. × 5 days</td>
<td>1,200 mg PO on day 5</td>
<td>18</td>
<td>1.27 (0.89 to 1.81)</td>
<td>1.26 (1.01 to 1.56)</td>
</tr>
<tr>
<td>Midazolam</td>
<td>15 mg PO on day 3</td>
<td>500 mg/day PO × 3 days</td>
<td>12</td>
<td>0.90 (0.81 to 1.01)</td>
<td>0.85 (0.78 to 0.93)</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>750 mg t.i.d. × 11 days</td>
<td>1,200 mg PO on day 9</td>
<td>14</td>
<td>1.09 (0.86 to 1.57)</td>
<td>0.92 (0.75 to 1.12)</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>300 mg/day × 10 days</td>
<td>500 mg PO on day 1, then 250 mg/day on days 2–10</td>
<td>6</td>
<td>1.16 (1.02 to 1.40)</td>
<td>1.02 (0.86 to 1.22)</td>
</tr>
<tr>
<td>Sildenafil</td>
<td>100 mg on days 1 and 4</td>
<td>500 mg/day PO × 3 days</td>
<td>12</td>
<td>1.19 (1.02 to 1.40)</td>
<td>1.02 (0.86 to 1.22)</td>
</tr>
<tr>
<td>Theophylline</td>
<td>4 mg/kg intravenous on days 1, 11, and 25</td>
<td>500 mg PO on day 7, 250 mg/day on days 8–11</td>
<td>10</td>
<td>1.09 (0.92 to 1.29)</td>
<td>1.08 (0.89 to 1.31)</td>
</tr>
<tr>
<td>Theophylline</td>
<td>300 mg PO b.i.d. × 15 days</td>
<td>500 mg PO on day 6, then 250 mg/day on days 7–10</td>
<td>8</td>
<td>1.07 (0.78 to 1.38)</td>
<td>0.87 (0.80 to 0.96)</td>
</tr>
<tr>
<td>Triazolam</td>
<td>0.125 mg on day 2</td>
<td>500 mg PO on day 1, then 250 mg/day on day 2</td>
<td>12</td>
<td>1.06 (0.78 to 1.38)</td>
<td>1.02 (0.80 to 1.22)</td>
</tr>
<tr>
<td>Trimethoprim/Sulphamethoxazole</td>
<td>160 mg/800 mg/day PO × 7 days</td>
<td>1,200 mg PO on day 7</td>
<td>12</td>
<td>0.85 (0.75 to 0.97)/ 0.90 (0.78 to 1.03)</td>
<td>0.87 (0.80 to 0.96)</td>
</tr>
</tbody>
</table>

See footnote below for Rifabutin.
<table>
<thead>
<tr>
<th>Co-administered Drug</th>
<th>Dose of Co-administered Drug</th>
<th>Dose of Azithromycin</th>
<th>N</th>
<th>Ratio (With/Without Co-administered Drug) of Azithromycin Pharmacokinetic Parameters (90% CI); No Effect = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efavirenz</td>
<td>400 mg/day × 7 days</td>
<td>600 mg PO on day 7</td>
<td>14</td>
<td>1.22 (1.04 to 1.42)</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>200 mg PO single dose</td>
<td>1,200 mg PO single dose</td>
<td>18</td>
<td>0.82 (0.66 to 1.02)</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>750 mg t.i.d. × 11 days</td>
<td>1,200 mg PO on day 9</td>
<td>14</td>
<td>2.36 (1.77 to 3.15)</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>300 mg/day × 10 days</td>
<td>500 mg PO on day 1, then 250 mg/day on days 2-10</td>
<td>6</td>
<td>See footnote below</td>
</tr>
</tbody>
</table>

Mean azithromycin concentrations one day after the last dose were 53 ng/mL when co-administered with 300 mg daily rifabutin and 49 ng/mL when co-administered with placebo.

* 90% CI not reported

Indications

Azithromycin is a macrolide antibacterial drug indicated for the treatment of patients with mild- to- moderate infections caused by susceptible strains of the designated microorganisms in the specific conditions listed below. Recommended dosages and durations of therapy in adult and paediatric patient populations vary in these indications.
Adults

Acute bacterial exacerbations of chronic bronchitis due to *Haemophilus influenzae, Moraxella catarrhalis, or Streptococcus pneumoniae*.

Acute bacterial sinusitis due to *Haemophilus influenzae, Moraxella catarrhalis* or *Streptococcus pneumoniae*.

Community-acquired pneumonia due to *Chlamydophila pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae* or *Streptococcus pneumoniae* in patients appropriate for oral therapy.

Pharyngitis/tonsillitis caused by *Streptococcus pyogenes* as an alternative to first-line therapy in individuals who cannot use first-line therapy.

Uncomplicated skin and skin structure infections due to *Staphylococcus aureus, Streptococcus pyogenes, or Streptococcus agalactiae*.

Urethritis and cervicitis due to *Chlamydia trachomatis* or *Neisseria gonorrhoeae*.

Genital ulcer disease in men due to *Haemophilus ducreyi* (chancroid). Due to the small number of women included in clinical trials, the efficacy of azithromycin in the treatment of chancroid in women has not been established.

Paediatric Patients

Acute otitis media caused by *Haemophilus influenzae, Moraxella catarrhalis* or *Streptococcus pneumoniae*.

Pharyngitis/tonsillitis caused by *Streptococcus pyogenes* as an alternative to first-line therapy in individuals who cannot use first-line therapy.

Sinusitis caused by *Haemophilus influenzae, Moraxella catarrhalis, or Streptococcus pneumoniae*.

Acute bronchitis caused by *Chlamydia pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae* or *Streptococcus pneumoniae*.

Community-acquired pneumonia due to *Chlamydophila pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae* or *Streptococcus pneumoniae* in patients appropriate for oral therapy.

Uncomplicated skin and soft tissues infections like furunculosis, pyoderma and impetigo due to *Staphylococcus aureus, Streptococcus pyogenes* and *Streptococcus agalactiae*.

Uncomplicated genital infections (in adolescents and older children) like urethritis and cervicitis due to *Chlamydia trachomatis*.

To reduce the development of drug-resistant bacteria and maintain the effectiveness of azithromycin and other antibacterial drugs, azithromycin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns
may contribute to the empiric selection of therapy.

Limitations of Use

Azithromycin should not be used in patients with pneumonia who are judged to be inappropriate for oral therapy because of moderate to severe illness or risk factors such as any of the following:

- Patients with cystic fibrosis;
- Patients with nosocomial infections;
- Patients with known or suspected bacteremia;
- Patients requiring hospitalization;
- Elderly or debilitated patients; or
- Patients with significant underlying health problems that may compromise their ability to respond to their illness (including immunodeficiency or functional asplenia).

Dosage And Administration

Dosage

Adults

<table>
<thead>
<tr>
<th>Infection*</th>
<th>Recommended Dose/Duration of Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-acquired pneumonia (mild severity)</td>
<td>500 mg as a single dose on day 1, followed by 250 mg once daily on days 2 through 5.</td>
</tr>
<tr>
<td>Pharyngitis/tonsillitis (second-line therapy)</td>
<td></td>
</tr>
<tr>
<td>Skin/skin structure (uncomplicated)</td>
<td></td>
</tr>
<tr>
<td>Acute bacterial exacerbations of chronic obstructive pulmonary disease (mild to moderate)</td>
<td>500 mg q.d. × 3 days OR 500 mg as a single dose on day 1, followed by 250 mg once daily on days 2 through 5.</td>
</tr>
<tr>
<td>Acute bacterial sinusitis</td>
<td>500 mg q.d. × 3 days</td>
</tr>
<tr>
<td>Genital ulcer disease (chancroid)</td>
<td>One single 1 gm dose</td>
</tr>
<tr>
<td>Non-gonococcal urethritis and cervicitis</td>
<td>One single 1 gm dose</td>
</tr>
<tr>
<td>Gonococcal urethritis and cervicitis</td>
<td>One single 2 gm dose</td>
</tr>
</tbody>
</table>

*Due to the indicated organisms.

Paediatric Patients

<table>
<thead>
<tr>
<th>Age</th>
<th>Indications</th>
<th>1-Day Regimen</th>
<th>3-Day Regimen</th>
<th>5-Day Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Due to the indicated organisms.
From 6 months and above

<table>
<thead>
<tr>
<th>Condition</th>
<th>Dosage</th>
<th>Day 1: 10 mg/kg single dose</th>
<th>Days 2-5: 5 mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute otitis media</td>
<td>30 mg/kg single dose</td>
<td>10 mg/kg once daily</td>
<td></td>
</tr>
<tr>
<td>Acute bacterial sinusitis</td>
<td>10 mg/kg once daily</td>
<td>Day 1: 10 mg/kg single dose</td>
<td>Days 2-5: 5 mg/kg/day</td>
</tr>
<tr>
<td>Community-acquired pneumonia/Acute bronchitis</td>
<td>10 mg/kg once daily</td>
<td>Day 1: 10 mg/kg single dose</td>
<td>Days 2-5: 5 mg/kg/day</td>
</tr>
<tr>
<td>Uncomplicated Skin and soft tissue infections</td>
<td>10 mg/kg once daily</td>
<td>Day 1: 10 mg/kg single dose</td>
<td>Days 2-5: 5 mg/kg/day</td>
</tr>
</tbody>
</table>

From 1 year – 2 years

<table>
<thead>
<tr>
<th>Condition</th>
<th>Dosage</th>
<th>Day 1: 10 mg/kg single dose</th>
<th>Days 2-5: 5 mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharyngitis/Tonsillitis</td>
<td>10 or 20 mg/kg with max. daily dose of 500 mg</td>
<td>Day 1: 10 mg/kg single dose</td>
<td>Days 2-5: 5 mg/kg/day</td>
</tr>
</tbody>
</table>

From 2 years and above

<table>
<thead>
<tr>
<th>Condition</th>
<th>Dosage</th>
<th>Day 1: 10 mg/kg single dose</th>
<th>Days 2-5: 5 mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharyngitis/Tonsillitis</td>
<td>10 or 20 mg/kg with max. daily dose of 500 mg</td>
<td>Day 1: 10 mg/kg single dose</td>
<td>Days 2-5: 5 mg/kg/day</td>
</tr>
</tbody>
</table>

Adolescents and older children (weighing above 45 kg)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Dosage</th>
<th>Day 1: 10 mg/kg single dose</th>
<th>Days 2-5: 5 mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncomplicated genital infections</td>
<td>A single 1 gm dose</td>
<td>Day 1: 10 mg/kg single dose</td>
<td>Days 2-5: 5 mg/kg/day</td>
</tr>
</tbody>
</table>

Children above 45 kg weight

<table>
<thead>
<tr>
<th>Condition</th>
<th>Dosage</th>
<th>Day 1: 10 mg/kg single dose</th>
<th>Days 2-5: 5 mg/kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>All above given indications</td>
<td>As per adult dosage</td>
<td>Day 1: 10 mg/kg single dose</td>
<td>Days 2-5: 5 mg/kg/day</td>
</tr>
</tbody>
</table>

Effectiveness of the 1-day regimen in paediatric patients with community-acquired pneumonia and acute bacterial sinusitis has not been established. The safety of re-dosing azithromycin in paediatric patients who vomit after receiving 30 mg/kg as a single dose has not been established.

Renal Impairment

No dosage adjustment is recommended for subjects with mild-to-moderate renal impairment (GFR 10–80 ml/min). Caution should be exercised when azithromycin is administered to subjects with severe renal impairment (GFR <10 ml/min). In patients with severe renal impairment (GFR <10 ml/min), a 33% increase in systemic exposure to azithromycin was observed.

Hepatic Impairment

A dose adjustment is not necessary for patients with mild-to-moderately impaired liver function. Since azithromycin is metabolized in the liver and excreted in the bile, the drug should not be given to patients suffering from severe liver disease.

Elderly Patients
The same dosage as in adult patients is used in the elderly. Since elderly patients can be patients with ongoing pro-arrhythmic conditions, a particular caution is recommended due to the risk of developing cardiac arrhythmia and *torsades de pointes*.

Gender

No dosage adjustment is recommended based on gender.

Administration

AZEE Tablets, Dry Syrup and **DT** can be taken with or without food.

AZEE DT

Disperse the tablet in a teaspoonful (5 ml) of boiled and cooled water before administration.

AZEE Dry Syrup

Direction for Preparing the Suspension

At the time of dispensing, the dry powder should be reconstituted to form an oral suspension. First, shake the bottle to loosen the powder. Pour boiled and cooled water into the bottle. Recap the bottle, and shake it vigorously. Adjust the suspension volume up to the arrow mark by adding more water, if necessary, and shake again. Store the reconstituted suspension in a cool place.

After reconstitution, the contents should be consumed within 5 days. Keep tightly closed. Shake well before each use. Discard the unused portion after 5 days.

Contraindications

Azithromycin is contraindicated in patients with a known hypersensitivity to azithromycin, erythromycin, any macrolide or ketolide antibiotic or any of its excipients.

Azithromycin is contraindicated in patients with a history of cholestatic jaundice/hepatic dysfunction associated with prior use of azithromycin.

Warnings And Precautions

General

Hypersensitivity

Serious allergic reactions, including angioneurotic oedema, anaphylaxis and dermatologic reactions (including Stevens-Johnson syndrome and toxic epidermal necrolysis), have been reported rarely in patients on azithromycin therapy.

Fatalities have been reported. Cases of drug reaction with eosinophilia and systemic symptoms (DRESS) have also been reported. Despite initially successful symptomatic treatment of the allergic symptoms, when symptomatic therapy was discontinued, the allergic symptoms **recurred soon thereafter in some patients without further azithromycin exposure**. These patients required prolonged periods of observation and symptomatic treatment. The relationship of these episodes to
the long tissue half-life of azithromycin and subsequent prolonged exposure to antigen is unknown at present.

If an allergic reaction occurs, the drug should be discontinued and appropriate therapy should be instituted. Physicians should be aware that reappearance of the allergic symptoms may occur when symptomatic therapy is discontinued.

Hepatotoxicity

Since liver is the principal route of elimination for azithromycin, the use of azithromycin should be undertaken with caution in patients with significant hepatic disease. Abnormal liver function, hepatitis, cholestatic jaundice, hepatic necrosis and hepatic failure have been reported, some of which have resulted in death. Discontinue azithromycin immediately if signs and symptoms of hepatitis occur.

Cases of fulminant hepatitis potentially leading to life-threatening liver failure have been reported with azithromycin. Some patients may have had pre-existing hepatic disease or may have been taking other hepatotoxic medicinal products.

In case of signs and symptoms of liver dysfunction, such as rapid developing asthenia associated with jaundice, dark urine, bleeding tendency or hepatic encephalopathy, liver function tests/investigations should be performed immediately. Azithromycin administration should be stopped if liver dysfunction has emerged.

Interaction with Ergot Derivative

In patients receiving ergot derivatives, ergotism has been precipitated by co-administration of some macrolide antibiotics. There are no data concerning the possibility of an interaction between ergot and azithromycin. However, because of the theoretical possibility of ergotism, azithromycin and ergot derivatives should not be co-administrated.

Clostridium difficile-associated Diarrhoea

Clostridium difficile-associated diarrhoea (CDAD) has been reported with the use of nearly all antibacterial agents, including azithromycin, and may range in severity from mild diarrhoea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon, leading to overgrowth of Clostridium difficile.

Clostridium difficile produces toxins A and B, which contribute to the development of CDAD. Hypertoxin-producing strains of Clostridium difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhoea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over 2 months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against Clostridium difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of Clostridium difficile, and surgical evaluation should be instituted as clinically indicated.

QT Prolongation

Prolonged cardiac repolarization and QT interval, imparting a risk of developing cardiac arrhythmia
and torsades de pointes, have been seen in treatment with macrolides, including azithromycin. Cases of torsades de pointes have been spontaneously reported during postmarketing surveillance in patients receiving azithromycin. Providers should consider the risk of QT prolongation which can be fatal when weighing the risks and benefits of azithromycin for at-risk groups, including

- patients with known prolongation of the QT interval, a history of torsades de pointes, congenital long QT syndrome, bradyarrhythmias or uncompensated heart failure;
- patients on drugs known to prolong the QT interval; and,
- patients with ongoing pro-arrhythmic conditions such as uncorrected hypokalaemia or hypomagnesaemia, clinically significant bradycardia, and in patients receiving Class IA (quinidine, procainamide) or Class III (dofetilide, aminodarone, sotalol) anti-arrhythmic agents, cisapride and terfenadine; antipsychotic agents such as pimozide; antidepressants such as citalopram; and fluoroquinolones such as moxifloxacin and levofloxacin.

Elderly patients may be more susceptible to drug-associated effects on the QT interval.

Exacerbation of Myasthenia Gravis

Exacerbation of symptoms of myasthenia gravis and new onset of myasthenic syndrome have been reported in patients receiving azithromycin therapy.

Use in Sexually Transmitted Infections

Azithromycin at the recommended dose should not be relied upon to treat syphilis. Antibacterial agents used to treat non-gonococcal urethritis may mask or delay the symptoms of incubating syphilis. All patients with sexually transmitted urethritis or cervicitis should have a serologic test for syphilis and appropriate testing for gonorrhea performed at the time of diagnosis. Appropriate antibacterial therapy and follow-up tests for these diseases should be initiated if infection is confirmed.

Development of Drug-resistant Bacteria

Prescribing azithromycin in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

Superinfection

As with any antibiotic preparation, observation for signs of superinfection with non-susceptible organisms including fungi is recommended.

Streptococcal Infections

Penicillin is usually the first choice for treatment of pharyngitis/tonsillitis due to Streptococcus pyogenes and also for prophylaxis of acute rheumatic fever. Azithromycin is in general effective against streptococcus in the oropharynx, but no data are available that demonstrate the efficacy of azithromycin in preventing acute rheumatic fever.

Effects on the Ability to Drive and Use Machines

There is no evidence to suggest that azithromycin may have an effect on a patient's ability to drive or operate machinery.
Azithromycin tablets and oral suspension can be taken with or without food.

Patients should also be cautioned not to take aluminium- and magnesium-containing antacids and azithromycin simultaneously.

The patient should be directed to discontinue azithromycin immediately and contact a physician if any signs of an allergic reaction occur.

Patients should be counselled that antibacterial drugs, including azithromycin, should only be used to treat bacterial infections. They do not treat viral infections (e.g. the common cold). When azithromycin is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of the therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment, and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by azithromycin or other antibacterial drugs in the future.

Diarrhoea is a common problem caused by antibiotics, which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as 2 or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

Drug Interactions

Antacids

In a pharmacokinetic study investigating the effects of simultaneous administration of antacid with azithromycin, no effect on overall bioavailability was seen, although peak serum concentrations were reduced by approximately 24%. In patients receiving both azithromycin and antacids, the drugs should not be taken simultaneously.

Cetirizine

In healthy volunteers, co-administration of a 5-day regimen of azithromycin with cetirizine 20 mg at steady-state resulted in no pharmacokinetic interaction and no significant changes in the QT interval.

Didanosine (Dideoxyinosine)

Co-administration of 1200 mg/day azithromycin with 400 mg/day didanosine in 6 HIV-positive subjects did not appear to affect the steady-state pharmacokinetics of didanosine as compared with placebo.

Digoxin

Concomitant administration of macrolide antibiotics, including azithromycin, with P-glycoprotein substrates such as digoxin, has been reported to result in increased serum levels of the P-glycoprotein substrate. Therefore, if azithromycin and P-gp substrates such as digoxin are administered concomitantly, the possibility of elevated serum concentrations of the substrate should be considered. Some of the macrolide antibiotics have been reported to impair the microbial
metabolism of digoxin in the gut in some patients. In patients receiving concomitant azithromycin, a related azalide antibiotic, and digoxin, the possibility of raised digoxin levels should be borne in mind.

Zidovudine

Single 1,000 mg doses and multiple 1,200 mg or 600 mg doses of azithromycin had little effect on the plasma pharmacokinetics or urinary excretion of zidovudine or its glucuronide metabolite. However, administration of azithromycin increased the concentrations of phosphorylated zidovudine, the clinically active metabolite, in peripheral blood mononuclear cells. The clinical significance of this finding is unclear, but it may be of benefit to patients.

Azithromycin does not interact significantly with the hepatic cytochrome (CY) P450 system. It is not believed to undergo the pharmacokinetic drug interactions as seen with erythromycin and other macrolides. Hepatic CYP450 induction or inactivation via cytochrome-metabolite complex does not occur with azithromycin.

Ergot Derivatives

Due to the theoretical possibility of ergotism, the concurrent use of azithromycin with ergot derivatives is not recommended.

Effects of Other Medicinal Products on Azithromycin

Pharmacokinetic studies have been conducted between azithromycin and the following drugs known to undergo significant CYP450-mediated metabolism:

Atorvastatin

Co-administration of atorvastatin (10 mg daily) and azithromycin (500 mg daily) did not alter the plasma concentrations of atorvastatin (based on a HMG CoA-reductase inhibition assay). However, postmarketing cases of rhabdomyolysis in patients receiving azithromycin with statins have been reported.

Carbamazepine

In a pharmacokinetic interaction study in healthy volunteers, no significant effect was observed on the plasma levels of carbamazepine or its active metabolite in patients receiving concomitant azithromycin.

Cisapride

Cisapride is metabolized in the liver by the enzyme CYP3A4. Because macrolides inhibit this enzyme, concomitant administration of cisapride may cause the increase of QT interval prolongation, ventricular arrhythmias and *torsades de pointes*.

Cimetidine

In a pharmacokinetic study investigating the effects of a single dose of cimetidine, given 2 hours before azithromycin, on the pharmacokinetics of azithromycin, no alteration of azithromycin pharmacokinetics was seen.

Coumarin-type Oral Anticoagulants
In a pharmacokinetic interaction study, azithromycin did not alter the anticoagulant effect of a single 15 mg dose of warfarin administered to healthy volunteers. There have been reports received in the post-marketing period of potentiated anticoagulation subsequent to co-administration of azithromycin and coumarin-type oral anticoagulants. Although a causal relationship has not been established, consideration should be given to the frequency of monitoring prothrombin time when azithromycin is used in patients receiving coumarin-type oral anticoagulants.

Ciclosporin

In a pharmacokinetic study with healthy volunteers that were administered a 500 mg/day oral dose of azithromycin for 3 days and were then administered a single 10 mg/kg oral dose of ciclosporin, the resulting ciclosporin C_{max} and AUC_{0-5} were found to be significantly elevated (by 24% and 21%, respectively); however, no significant changes were seen in $\text{AUC}_{0-\infty}$. Consequently, caution should be exercised before considering concurrent administration of these drugs. If co-administration of these drugs is necessary, ciclosporin levels should be monitored and the dose adjusted accordingly.

Efavirenz

Co-administration of a 600 mg single dose of azithromycin and 400 mg efavirenz daily for 7 days did not result in any clinically significant pharmacokinetic interactions.

Fluconazole

Co-administration of a single dose of 1200 mg azithromycin did not alter the pharmacokinetics of a single dose of 800 mg fluconazole. Total exposure and half-life of azithromycin were unchanged by the co-administration of fluconazole; however, a clinically insignificant decrease in C_{max} (18%) of azithromycin was observed.

Indinavir

Co-administration of a single dose of 1,200 mg azithromycin had no statistically significant effect on the pharmacokinetics of indinavir administered as 800 mg three times daily for 5 days.

Methylprednisolone

In a pharmacokinetic interaction study in healthy volunteers, azithromycin had no significant effect on the pharmacokinetics of methylprednisolone.

Midazolam

In healthy volunteers, co-administration of azithromycin 500 mg/day for 3 days did not cause clinically significant changes in the pharmacokinetics and pharmacodynamics of a single 15 mg dose of midazolam.

Nelfinavir

Co-administration of azithromycin (1,200 mg) and nelfinavir at steady state (750 mg three times daily) resulted in increased azithromycin concentrations. Although a dose adjustment of azithromycin is not recommended when administered in combination with nelfinavir, close monitoring for known adverse reactions of azithromycin, such as liver enzyme abnormalities and hearing impairment, is warranted.

Rifabutin
Co-administration of azithromycin and rifabutin did not affect the serum concentrations of either drug. Neutropenia was observed in subjects receiving concomitant treatment of azithromycin and rifabutin. Although neutropenia has been associated with the use of rifabutin, a causal relationship to combination with azithromycin has not been established.

Sildenafil

In normal healthy male volunteers, there was no evidence of an effect of azithromycin (500 mg daily for 3 days) on the AUC and C_{max} of sildenafil or its major circulating metabolite.

Terfenadine

Pharmacokinetic studies have reported no evidence of an interaction between azithromycin and terfenadine. There have been rare cases reported where the possibility of such an interaction could not be entirely excluded; however there was no specific evidence that such an interaction had occurred.

Theophylline

There is no evidence of a clinically significant pharmacokinetic interaction when azithromycin and theophylline are co-administered to healthy volunteers.

Triazolam

In 14 healthy volunteers, co-administration of azithromycin 500 mg on day 1 and 250 mg on day 2 with 0.125 mg triazolam on day 2 had no significant effect on any of the pharmacokinetic variables for triazolam compared to triazolam and placebo.

Trimethoprim/sulfamethoxazole

Co-administration of trimethoprim/sulfamethoxazole DS (160 mg/800 mg) for 7 days with azithromycin 1,200 mg on day 7 had no significant effect on peak concentrations, total exposure or urinary excretion of either trimethoprim or sulfamethoxazole. Azithromycin serum concentrations were similar to those seen in other studies.

<table>
<thead>
<tr>
<th>Renal Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No dosage adjustment is recommended for subjects with mild-to-moderate renal impairment (GFR 10–80 ml/min). Caution should be exercised when azithromycin is administered to subjects with severe renal impairment (GFR <10 ml/min). In patients with severe renal impairment (GFR <10 ml/min) a 33% increase in systemic exposure to azithromycin was observed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hepatic Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A dose adjustment is not necessary for patients with mild-to-moderately impaired liver function.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnancy Category B</td>
</tr>
<tr>
<td>There are no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, azithromycin should be used during pregnancy...</td>
</tr>
</tbody>
</table>
only if clearly needed.

Lactation

Azithromycin has been reported to be excreted in human breast milk in small amounts. Caution should be exercised when azithromycin is administered to a nursing mother.

Paediatric Use

Safety and effectiveness in the treatment of paediatric patients with acute otitis media, acute bacterial sinusitis and community-acquired pneumonia under 6 months of age have not been established. Use of azithromycin for the treatment of acute bacterial sinusitis and community-acquired pneumonia in paediatric patients (6 months of age or greater) is supported by adequate and well controlled trials in adults. Safety and effectiveness in the treatment of paediatric patients with pharyngitis/tonsillitis under 1 year of age have not been established.

Safety and efficacy for prevention or treatment of *M. avium* complex in children have not been established.

Geriatric Use

In multiple-dose clinical trials of oral azithromycin, 9% of patients were at least 65 years of age (458/4,949) and 3% of patients (144/4,949) were at least 75 years of age. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in response between the elderly and younger patients, but the greater sensitivity of some older individuals cannot be ruled out.

Elderly patients may be more susceptible to development of *torsades de pointes* arrhythmia than younger patients.

Undesirable Effects

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

In clinical trials, most of the reported side effects were mild to moderate in severity and were reversible upon discontinuation of the drug. Potentially serious side effects of angio-oedema and cholestatic jaundice were reported rarely. Approximately 0.7% of the patients (adults and paediatric patients) from the 5-day multiple-dose clinical trials discontinued azithromycin therapy because of treatment-related side effects. In adults given 500 mg/day for 3 days, the discontinuation rate due to treatment-related side effects was 0.6%. In clinical trials in paediatric patients given 30 mg/kg, either as a single dose or over 3 days, discontinuation from the trials due to treatment-related side effects was approximately 1%. Most of the side effects leading to discontinuation were related to the gastrointestinal tract, e.g. nausea, vomiting, diarrhoea or abdominal pain.

Clinical

Adults
Multiple-Dose Regimens

Overall, the most common treatment-related side effects in adult patients receiving multiple-dose regimens of azithromycin were related to the gastrointestinal system, with diarrhoea/loose stools (4–5%), nausea (3%), and abdominal pain (2–3%) being the most frequently reported.

No other treatment-related side effects occurred in patients on the multiple-dose regimens of azithromycin with a frequency greater than 1%. Side effects that occurred with a frequency of 1% or less included the following:

Cardiovascular: Palpitations, chest pain.

Gastrointestinal: Dyspepsia, flatulence, vomiting, melaena and cholestatic jaundice.

Genitourinary: Monilia, vaginitis and nephritis.

Nervous System: Dizziness, headache, vertigo and somnolence.

General: Fatigue.

Allergic: Rash, pruritus, photosensitivity and angio-oedema.

Single 1 gm Dose Regimen

Overall, the most common side effects in patients receiving a single-dose regimen of 1 gm of azithromycin were related to the gastrointestinal system and were more frequently reported than in patients receiving the multiple-dose regimen.

Side effects that occurred in patients on the single 1 gm dosing regimen of azithromycin with a frequency of 1% or greater included diarrhoea/loose stools (7%), nausea (5%), abdominal pain (5%), vomiting (2%), dyspepsia (1%), and vaginitis (1%).

Single 2 gm Dose Regimen

Overall, the most common side effects in patients receiving a single 2 gm dose of azithromycin were related to the gastrointestinal system. Side effects that occurred in patients in this study with a frequency of 1% or greater included nausea (18%), diarrhoea/loose stools (14%), vomiting (7%), abdominal pain (7%), vaginitis (2%), dyspepsia (1%) and dizziness (1%). The majority of these complaints were mild in nature.

Paediatric Patients

Single- and Multiple-Dose Regimens

The types of side effects in paediatric patients were comparable with those seen in adults, with different incidence rates for the dosage regimens recommended in paediatric patients.

Acute Otitis Media

For the recommended total dosage regimen of 30 mg/kg, the most frequent side effects (≥1%) attributed to treatment were diarrhoea, abdominal pain, vomiting, nausea and rash.

The incidence, based on dosing regimen, is described in the table below:
Community-acquired Pneumonia

For the recommended dosage regimen of 10 mg/kg on day 1 followed by 5 mg/kg on days 2–5, the most frequent side effects attributed to treatment were diarrhoea/loose stools, abdominal pain, vomiting, nausea and rash.

The incidence is described in the table below:

<table>
<thead>
<tr>
<th>Dosage Regimen</th>
<th>Diarrhoea/Loose stools, %</th>
<th>Abdominal Pain, %</th>
<th>Vomiting, %</th>
<th>Nausea, %</th>
<th>Rash, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-day</td>
<td>5.8%</td>
<td>1.9%</td>
<td>1.19%</td>
<td>1.9%</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Pharyngitis/Tonsillitis

For the recommended dosage regimen of 12 mg/kg on days 1–5, the most frequent side effects attributed to treatment were diarrhoea, vomiting, abdominal pain, nausea and headache.

The incidence is described in the table below:

<table>
<thead>
<tr>
<th>Dosage Regimen</th>
<th>Diarrhoea, %</th>
<th>Abdominal Pain, %</th>
<th>Vomiting, %</th>
<th>Nausea, %</th>
<th>Rash, %</th>
<th>Headache, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-day</td>
<td>5.4%</td>
<td>3.4%</td>
<td>5.6%</td>
<td>1.8%</td>
<td>0.7%</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

With any of the treatment regimens, no other treatment-related side effects occurred in paediatric patients treated with azithromycin with a frequency greater than 1%. Side effects that occurred with a frequency of 1% or less included the following:

Cardiovascular: Chest pain.

Gastrointestinal: Dyspepsia, constipation, anorexia, enteritis, flatulence, gastritis, jaundice, loose stools and oral moniliasis.

Haematologic and Lymphatic: Anaemia and leucopenia.

Nervous System: Headache (otitis media dosage), hyperkinesia, dizziness, agitation, nervousness and insomnia.

General: Fever, face oedema, fatigue, fungal infection, malaise and pain.

Allergic: Rash and allergic reaction.
Respiratory: Cough increased, pharyngitis, pleural effusion and rhinitis.

Skin and appendages: Eczema, fungal dermatitis, pruritus, sweating, urticaria and vesiculobullous rash.

Special senses: Conjunctivitis.

Postmarketing Experience

The following adverse reactions have been identified during post-approval use of azithromycin. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Adverse events reported with azithromycin during the postmarketing period in adult and/or paediatric patients for which a causal relationship may not be established included the following:

Allergic: Arthralgia, oedema, urticaria and angio-oedema.

Cardiovascular: Arrhythmias, including ventricular tachycardia and hypotension. There have been rare reports of QT prolongation and torsades de pointes.

Gastrointestinal: Anorexia, constipation, dyspepsia, flatulence, vomiting/diarrhoea rarely resulting in dehydration, pseudomembranous colitis, pancreatitis, oral candidiasis, pyloric stenosis, and rare reports of tongue discolouration.

General: Asthenia, paraesthesia, fatigue, malaise and anaphylaxis (rarely fatal).

Genitourinary: Interstitial nephritis and acute renal failure and vaginitis.

Haematopoietic: Thrombocytopenia.

Liver/Biliary: Abnormal liver function, hepatitis, cholestatic jaundice, hepatic necrosis, and hepatic failure.

Nervous System: Convulsions, dizziness/vertigo, headache, somnolence, hyperactivity, nervousness, agitation and syncope.

Psychiatric: Aggressive reaction and anxiety.

Skin/Appendages: Pruritus; rarely, serious skin reactions, including erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis and DRESS

Special Senses: Hearing disturbances, including hearing loss, deafness and/or tinnitus, and reports of taste/smell perversion and/or loss.

Laboratory Abnormalities

Adults

Clinically significant abnormalities (irrespective of drug relationship) occurring during the clinical trials were reported as follows:
With an Incidence of Greater Than 1%

Decreased haemoglobin, haematocrit, lymphocytes, neutrophils and blood glucose; elevated serum creatine phosphokinase, potassium, chloride, ALT, GGT, AST, BUN, creatinine, blood glucose, platelet count, lymphocytes, neutrophils and eosinophils

With an Incidence of Less Than 1%

Leucopaenia, neutropaenia, decreased sodium, potassium, platelet count, elevated monocytes, basophils, bicarbonate, serum alkaline phosphatase, bilirubin, LDH and phosphate. The majority of subjects with elevated serum creatinine also had abnormal values at baseline.

When follow-up was provided, changes in laboratory tests appeared to be reversible.

In multiple-dose clinical trials involving more than 5,000 patients, 4 patients discontinued therapy because of treatment-related liver enzyme abnormalities and 1 because of a renal function abnormality.

Paediatric Patients

Regimens for 1, 3 and 5 Days

Laboratory data collected from comparative clinical trials employing two 3-day regimens (30 mg/kg or 60 mg/kg in divided doses over 3 days), or two 5-day regimens (30 mg/kg or 60 mg/kg in divided doses over 5 days) were similar for regimens of azithromycin and all comparators combined, with most clinically significant laboratory abnormalities occurring at incidences of 1-5%. Laboratory data for patients receiving 30 mg/kg as a single dose were collected in one single-centre trial. In that trial, an absolute neutrophil count between 500 and 1,500 cells/mm3 was observed in 10/64 patients receiving 30 mg/kg as a single dose, 9/62 patients receiving 30 mg/kg given over 3 days, and 8/63 comparator patients. No patient had an absolute neutrophil count <500 cells/mm3.

In multiple-dose clinical trials involving approximately 4,700 paediatric patients, no patients discontinued therapy because of treatment-related laboratory abnormalities.

Other Adverse Reactions

Other adverse reactions possibly or probably related to azithromycin based on clinical trial experience and postmarketing surveillance are as below:

Common (≥1/100 <1/10): Dysgeusia, visual impairment, lymphocyte count decreased, eosinophil count increased, blood bicarbonate decreased

Uncommon (≥1/1,000 to <1/100): Candidiasis, angio-oedema, hypersensitivity, hypoaesethesia, photosensitivity reaction, dysphagia, dyspnoea, epistaxis, gastroenteritis, hot flush, vaginal infection, abdominal distension, dry mouth, eructation, mouth ulceration, salivary hypersecretion, hyperhidrosis, osteoarthritis, myalgia, back pain, neck pain, dysuria, renal pain, metrorrhagia, testicular disorder, pyrexia, peripheral oedema.

Not Known (Cannot Be Estimated from Available Data): Haemolytic anaemia, anaphylactic reaction, psychomotor hyperactivity, anosmia, ageusia, parosmia, renal failure acute, nephritis interstitial, myasthenia gravis, delirium, hallucination, psychomotor hyperactivity.
Overdosage

Adverse events experienced in higher than recommended doses were similar to those seen at normal doses. The typical symptoms of an overdose with macrolide antibiotics include reversible loss of hearing, severe nausea, vomiting and diarrhoea. In the event of overdose, the administration of medicinal charcoal and general symptomatic treatment and supportive measures are indicated as required.

Incompatibility

None reported.

Storage And Handling Instructions

Before Opening

Store at room temperature. Protect from moisture.

After Reconstitution

Store the reconstituted suspension in cool place. Contents need to be consumed within 5 days. Any extra portion left is to be thrown away.

Packaging Information

AZEE-250 Tablets: Strip pack of six tablets
AZEE-500 Tablets: Strip pack of three tablets
AZEE-1000 Tablets: Strip pack of one tablet

AZEE-100 DT: Strip pack of six tablets
AZEE-200 DT: Strip pack of six tablets

AZEE-100 Dry Syrup: Bottle of 15 ml
AZEE-200 Dry Syrup: Bottle of 15 ml

AZEE-100 XL Dry Syrup: Bottle of 30 ml
AZEE-200 XL Dry Syrup: Bottle of 30 ml

Last updated: June 2016
Last reviewed: June 2016

AZEE Tablets/DT/Dry Syrup

Source URL: https://ciplamed.com/content/azee-tabletsdtdry-syrup